ANALYSIS I EXAMPLES 4

C. M. Warnick Lent 2023

Comments on and/or corrections may be e-mailed to c.m.warnick@maths.cam.ac.uk.

1. Show directly from the definition of an integral that $\int_{0}^{a} x^{2}=a^{3} / 3$ for $a>0$.
2. Let $f(x)=\sin (1 / x)$ for $x \neq 0$ and $f(0)=0$. Does $\int_{0}^{1} f$ exist?
3. Give an example of a continuous function $f:[0, \infty) \rightarrow[0, \infty)$, such that $\int_{0}^{\infty} f$ exists but f is unbounded.
4. Give an example of an integrable function $f:[0,1] \rightarrow \mathbb{R}$ with $f \geqslant 0, \int_{0}^{1} f=0$, and $f(x)>0$ for some value of x. Show that this cannot happen if f is continuous.
5. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be monotonic. Show that $\{x \in \mathbb{R}: f$ is discontinuous at $x\}$ is countable. Let $x_{n}, n \geqslant 1$ be a sequence of distinct points in $(0,1]$. Let $f_{n}(x)=0$ if $0 \leqslant x<x_{n}$ and $f_{n}(x)=1$ if $x_{n} \leqslant x \leqslant 1$. Let $f(x)=\sum_{n=1}^{\infty} 2^{-n} f_{n}(x)$. Show that this series converges for every $x \in[0,1]$. Show that f is increasing (and so is integrable). Show that f is discontinuous at every x_{n}.
6. Let $f(x)=\log \left(1-x^{2}\right)$. Use the mean value theorem to show that $|f(x)| \leqslant 8 x^{2} / 3$ for $0 \leqslant x \leqslant 1 / 2$. Now let $I_{n}=\int_{n-1 / 2}^{n+1 / 2} \log x d x-\log n$ for $n \in \mathbb{N}$. Show that $I_{n}=\int_{0}^{1 / 2} f(t / n) d t$ and hence that $\left|I_{n}\right| \leqslant 1 / 9 n^{2}$. By considering $\sum_{j=1}^{n} I_{j}$, deduce that $n!/ n^{n+1 / 2} e^{-n} \rightarrow \ell$ for some constant ℓ.
[The bounds $8 x^{2} / 3$ and $1 / 9 n^{2}$ are not best possible; they are merely good enough for the conclusion.]
7. Let $I_{n}=\int_{0}^{\pi / 2} \cos ^{n} x$. Prove that $n I_{n}=(n-1) I_{n-2}$, and hence $\frac{2 n}{2 n+1} \leqslant \frac{I_{2 n+1}}{I_{2 n}} \leqslant 1$. Deduce Wallis's Product:

$$
\frac{\pi}{2}=\lim _{n \rightarrow \infty} \frac{2 \cdot 2 \cdot 4 \cdot 4 \cdots 2 n \cdot 2 n}{1 \cdot 3 \cdot 3 \cdot 5 \cdots(2 n-1) \cdot(2 n+1)}=\lim _{n \rightarrow \infty} \frac{2^{4 n}}{2 n+1}\binom{2 n}{n}^{-2} .
$$

By taking note of the previous exercise, prove that $n!/ n^{n+1 / 2} e^{-n} \rightarrow \sqrt{2 \pi}$ (Stirling's formula).
8. Do these improper integrals converge?
(i) $\int_{1}^{\infty} \sin ^{2}(1 / x) d x$,
(ii) $\int_{0}^{\infty} x^{p} \exp \left(-x^{q}\right) d x$ where $p, q>0$.
9. Show that $\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{2 n} \rightarrow \log 2$ as $n \rightarrow \infty$, and find $\lim _{n \rightarrow \infty} \frac{1}{n+1}-\frac{1}{n+2}+$ $\cdots+\frac{(-1)^{n-1}}{2 n}$.
10. Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous and suppose that $\int_{a}^{b} f(x) g(x) d x=0$ for every continuous function $g:[a, b] \rightarrow \mathbb{R}$ which vanishes near a and b. Must f vanish identically?
[We say g vanishes near a and b if there exists $\epsilon>0$ such that $g(x)=0$ for $x \notin$ $(a+\epsilon, b-\epsilon)$.]
11. Let $f:[0,1] \rightarrow \mathbb{R}$ be continuous. Let $G(x, t)=t(x-1)$ for $t \leqslant x$ and $G(x, t)=$ $x(t-1)$ for $t \geqslant x$. Let $g(x)=\int_{0}^{1} f(t) G(x, t) d t$. Show that $g^{\prime \prime}(x)$ exists for $x \in(0,1)$ and equals $f(x)$.
12. Let $I_{n}(\theta)=\int_{-1}^{1}\left(1-x^{2}\right)^{n} \cos (\theta x) d x$. Prove that $\theta^{2} I_{n}=2 n(2 n-1) I_{n-1}-4 n(n-1) I_{n-2}$ for $n \geqslant 2$, and hence that $\theta^{2 n+1} I_{n}(\theta)=n!\left(P_{n}(\theta) \sin \theta+Q_{n}(\theta) \cos \theta\right)$, where P_{n} and Q_{n} are polynomials of degree at most $2 n$ with integer coefficients. Deduce that π is irrational.
13. Let $f_{1}, f_{2}:[-1,1] \rightarrow \mathbb{R}$ be increasing and $g=f_{1}-f_{2}$. Show that there exists K such that, for any dissection $\mathcal{D}=x_{0}<\cdots<x_{n}$ of $[-1,1], \sum_{j=1}^{n}\left|g\left(x_{j}\right)-g\left(x_{j-1}\right)\right| \leqslant K$. Now let $g(x)=x \sin (1 / x)$ for $x \neq 0$ and $g(0)=0$. Show that g is integrable but is not the difference of two increasing functions.
14^{+}. Show that if $f:[0,1] \rightarrow \mathbb{R}$ is integrable then f has a point of continuity. Deduce that f must have infinitely many points of continuity.

